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Markov's inequality for the maxima of the derivatives of polynomials over cubes
is replaced by an inequality where the cubes are changed to certain cubes inter
sected by a given subset F of IR". This new inequality is true for certain sets F c:nd
false for others. We are interested in the sets F for which this inequality is true and
we prove that these sets must have positive Hausdorff dimension. Our inequality is
not true if F is the closure of a domain with an outgoing cusp. We introduce a
generalized inequality which holds for these sets and prove that this new inequality
allows sets F with Hausdorff dimension zero. e' [992 AcademiC Press, Inc.

INTRODUCTION

The inequalities of Bernstein and Markov for the derivative of a polyno
mial are of importance in the proof of inverse theorems in approximation
theory. The inequality of A. A. Markov states that if P is an algebraic
polynomial in one variable of degree k then

max 1P'(x JI ~ k 2 max IP(x)l·
-l~x~l -l~x~l

For algebraic polynomials P in n real variables of total degree k and
with the interval [ -1, 1] replaced by any n-dimensional cube Q with side
of length 215, 0 < b, Markov's inequality becomes

c
max IVPI ~~max IPi,

Q U Q

/1 '
(1 j

. h ?'
WIt c = k- .../n.

If F is a given closed subset of IR" there are different possibilities of
replacing (1) by an inequality stating that Markov's inequality is, in some
sense, valid on F. This new inequality may be true for some sets F and false
for others, and, consequently, it gives a condition on the set F. Properly
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chosen this inequality serves a purpose for approximation of functions
defined on F similar to the original Bernstein and Markov inequalities on
an interval.

One such possibility is to replace Q by Qn F in (1) and to assume that
this new inequality is true for all cubes Q with side 215 :S 1 and center in F,
and for all polynomials P, with a constant e = elF, n, k) depending only on
F, n, and the degree k of P. This gives a condition on F which we express
by saying that F preserves Markov's inequality. This condition on F is
important in the study of polynomial interpolation and function spaces on '
F, in particular smoothness of functions defined on F by means of local
polynomial approximation (see [3,8-10] and Section 1.1). The condition
is studied in Section 1; see Section 1.1 for the precise definition and for a
geometrical characterization ·of these sets. It turns out that the class of sets
preserving Markov's inequality contains many fractal sets including
generalized Cantor sets of arbitrarily small, but positive, Hausdorff dimen
sion. Our main result is that, on the other hand, these sets cannot be too
small; in fact they must have positive Hausdorff dimension (Corollary 1 in
Section 1.4). As a preliminary, in Section 1.1 we have collected some known
results about sets preserving Markov's inequality, and some motivating
background material; in Section 1.2 we give a result on the Hausdorff
dimension of certain sets of a generalized Cantor type; and in Section 1.3
we give a suitable geometrical characterization of sets preserving Markov's
inequality.

A set which is the closure of a domain with an outgoing cusp does not
preserve Markov's inequality in the sense of Section 1. This is part of the
motivation for Section 2, where we study a generalized version of Markov's
inequality on F, a version which allows cusp domains. The cusp domain is
studied in Section 2.1 where we also give some further motivation. The
generalized Markov inequality is treated in Section 2.2. It is proved in
Section 2.3 that sets preserving this generalized Markov inequality may
have Hausdorff dimension zero (Proposition 11); this should be compared
to our main result, Corollary 1.

Finally we want to mention that another often studied version of (1) for
compact sets F is obtained by replacing Q by F in (1) and e/t5 by a
constant which is allowed to grow polynomially in the degree of P. This
version of Markov's inequality is important when studying smoothness of
functions on F by means of polynomial approximation over the whole of
F [12, Theorem 3.3 and 4.2], as well as for a number of other problems
[6].

Notation. IRn is the n-dimensional Euclidean space with points
x=(xt, ...,xn ) and the usual norm Ixi. Fis a closed non-empty subset of
IRn. B(x, r) is the closed n-dimensional ball with center x and radius r. Q
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is an n-dimensional cube with sides parallel to the coordinate axes. The
diameter of A c IR" is denoted diam A. The gradient is denoted by \7 and
the maximum norm of / over A by 11/11.4" 2i1 denotes the set of algebraic
polynomials in n real variables of total degree at most k.

1. SETS PRESERVING MARKOV'S INEQUALITY

1.1. We start with the following formal definition where we use
balls B instead of the cubes Q used in the introduction. However, this giv:=s
an equivalent condition (see Remark 1 below).

DEFINITION 1. A closed non-empty subset F of IR" preserves }'farko~"s

inequality if for every positive integer k there exists a constant c = c(F, n, k ,I,

depending only on F, n, and k, such that

C
IIVPIIBnF:(;-IIPIIBnF'r

(2)

for all P E iYk and all balls B = B(xo, r) with X oE F and 0 < r:(; 1. We call
(2) Markov's inequality on F.

As mentioned in the introduction (2) is important in the study of
smoothness properties of functions defined on F. We refer to [3 J for a
detailed study and here we mention only the following result: Let F be a
set preserving Markov's inequality, let (:I. be a positive number (the smooth
ness index), and let / be a bounded function on F. Then (see [3, p. 72J).f
is the restriction to F of a function in the Lipschitz space /lAIR") (see [3.
p. 2] for the definition of A,( IR")) if and only if there exists a constant CI

so that, for every cube Q with center in F and side of length (j:(; 1, there
exists a polynomial P having degree at most equal to the integer part of :x
such that

The connection between Markov's inequality and polynomial interpola
tion on F is explained in [8--10].

We refer to [3, pp. 34-40] and to [8, Sect. 1], for the proof of Proposi
tions 1--4 below.

PROPOSITION 1. F preserves Markov's inequality (l and only iffor every
positive integer k there exists a constant c 1 = C 1(F, n, k) such that for all balls
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B= B(xo, r), XoE F, 0 < r:::;:; 1, and all polynomials P(x) = Lljl a aj(x - xo)j
of degree at most k, we have

L la) rljl :::;:;c11IPI[BnF'
UI ,,; k

Remark 1. By using this proposition--or, alternatively, to argue as in
Section 2.2 below-it is possible to realize that in Definition 1 we may
change the condition 0< r:::;:; 1 to 0< r ~ ro for any constant ro > 0, and the
balls B to cubes Q with center in F and side at most 6o where 6o> °is any
constant, without changing the class of sets F preserving Markov's
inequality.

By using Proposition 1 or Markov's inequality in ~n one can also prove
the following proposition, which is useful for instance when studying
polynomial interpolation (see [10J).

PROPOSITION 2. F preserves Markov's inequality if and only if for every
positive integer k there exists a constant C1 = c1(n, F, k) so that

(3)

for all P E [JJ>k and all B = B(xo, rl, XoE F, 0< r ~ 1.

In the right-hand member of (3) it is, for each k, possible to replace the
maximum of IPI over B n F by the maximum of IPI over a finite k-uni
solvent subset of B n F, where the subset is independent of P (see [10,
IntroductionJ). This gives a link between (2) and polynomial interpolation.
Proposition 1 plays a crucial role in proving the somewhat surprising fact
that it is enough to assume that (1) holds for k = 1:

PROPOSITION 3. If (2) or (3) holds for all polynomials P of degree 1 with
a constant c = c(F, n), for all B = B(xo, r), XoE F, 0 < r:::;:; 1, then F preserves
Markov's inequality.

Because of Proposition 3 it is possible to give the following geometric
characterization of sets preserving Markov's inequality: a related geometric
characterization which may also be used to prove Proposition 4 will be
given in Proposition 7 in Section 1.3.

PROPOSITION 4. F preserves Markov's inequality if and only if there
exists an G> 0, so that for every ball B = B(xo, r), Xo E F, 0< r:::;:; 1, and
every band S of type S:= {x E W: lb· (x - xo)[ < cr}, bE W, [bl = 1 (see
Fig. 1),

F n (B\S) i= 0.
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To sum up, we have in principle three methods to characterize sets
preserving Markov's inequality: an algebraic given by Definition 1, a
geometric given by Proposition 4, and the one in terms of polynomial
interpolation mentioned after Proposition 2.

The geometric characterization in Proposition 4 means that a sel F
preserving Markov's inequality may not be too flat anywhere. For instance,
a subset of an (n - 1)-dimensional affine subspace of IRin or of the boundar~:

of an n-dimensional ball in IRi n does not preserve Markov's inequality.
Proposition 4 may also be used to give several examples of sets preserving
Markov's inequality. Such examples are the closure of an open set in IR"
with Lipschitz boundary or of an (c, b)-domain. Further examples are the
ordinary Cantor set, von Koch's curve and, in fact, a lot of other fractals:

PROPOSITION 5 [7, Theorem I]. A geometrically self-similar set [7.
Sect.2J, which is not a subset of an (n - 1)-dimensional affine subspace 0/
IRin, preserves Markov's inequality.

We see that there are a lot of sets preserving Markov's inequality.
including "small" sets like the ordinary Cantor set. The question comes up:
How small can a closed, non-empty set F preserving Markov's inequality
be? We see, for instance from Proposition 4, that F cannot have isolated
points, i.e., F must be a perfect set and, consequently, it must be non
denumerable. On the other hand it is straightforward to construct sets F
preserving Markov's inequality having Hausdorff dimension less than any
prescribed positive number. In fact, for n = 1 it is enough to take F as a
generalized Cantor set where we do as in the usual Cantor construction,
dividing each interval into three parts, except that we always let the length
of the interval in the middle consist of a fixed, prescribed proportion Gf
the length of the interval which we divide. By making this proportion close
to one we get a generalized Cantor set F with Hausdorff dimension as
close to zero as we wish (see Section 1.2), and, by Proposition 4, we may
check that F preserves Markov's inequality. By working with Cartesian
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products of generalized Cantor sets we may extend this example to higher
dimensions. We summarize this discussion (see also Remark 3 in Sec
tion 1.2):

PROPOSITION 6. There exists a generalized Cantor set Fin IRn preserving
Markov's inequality and having Hausdorff dimension less than any prescribed
positive number.

There is a close connection between nowhere dense sets preserving
Markov's inequality and sets of generalized Cantor type. We illustrate that
for n = 1 and assume that F is a closed, nowhere dense subset of [0, 1]
preserving Markov's inequality and containing °and 1. We shall see that
F is a generalized Cantor set in some sense. We start from [0, 1]. The set
[0, 1] \F is a union of open intervals. Let I be one of the largest of these.
The endpoints of I are different from °and 1 since these points belong to
F and F preserves Markov's inequality. We remove I from [0, 1] and
repeat the process on each of the two remaining intervals and remove two
new intervals, and so on. After infinitely many steps we get F written as a
generalized Cantor set.

By a variation of this construction we shall in Section 1.3 answer one
question about the size of sets preserving Markov's inequality by showing
that such a set always must contain a set of generalized Cantor type having
positive Hausdorff dimension. As a preparation we estimate the Hausdorff
dimension of sets of Cantor type in Section 1.2.

1.2. The Hausdorff dimension of generalized Cantor sets is deter
mined for instance in [4, 5]. The theorems in those papers, however, deal
with more general situations than the one we are interested in below and
their proofs are relatively comprehensive. We prefer, because of that, to
give a short proof which is easy to follow and adapted to our situation as
described in Theorem 1.

First we introduce some notation. If E is a subset of IRn
, s ~ 0, and

0<15:::; 00, we define

H~(E) := infI (diam UJ',

where the infimum is taken over all countable coverings of E by sets Ui

with diam Ui :::; b. When 15 decreases to zero H~(E) increases to a limit,
HS(E), finite or infinite, the s-dimensional Hausdorff measure of E. The
Hausdorff dimension of E, dimH(E), is either °or the unique positive
number So such that HS(E) is infinite if s < So and zero if s > so'

Next we turn to the construction of our generalized Cantor set E in [Rn.
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We define E by means of families :!4p , p = 0, 1,2, ... , of closed n-dimensional
balls by putting

x

E:= n U B. (4,!

p~O BE/Ap

The families ~p are chosen inductively as follows starting from glven
numbers rand p, r> 0, °< p < 1, where p is assumed to be small enough:

Ii) Every BE ap has radius pp := r . pP,

(ii) ~o consists of exactly one ball.

(iii) Suppose:!4p has been chosen. Chose 11 + 1 balls with pairwise
disjoint interior in every BEPAp • We define d8p + l as the family of all balls
obtained in this way from balls in flBp •

It follows that ,u,up consists of (n + 1)p balls. We observe that the
construction is possible if p is small enough and that E, defined by (4), has
points in the interior of B for any B in any ggp.

THEOREM 1. Let E be the generalized Cantor set cOflsrructed ab01'e and
put

1
s := log(n + 1)/log-.

p

Then there exists a positive constant M depending only on 11 such that

(?r)S
~ ~H'(E)~(2r)5.

In particular

. ' 1
dlmH(E) = log(n + I)! log-.

; p

Proof Take J > O. As E is covered by the balls in f!4p • for every p, we
get an estimate from above,

H~(E) ~ (n + I)P (2rpP)' = (2r)'. (5)

To get an estimate from below we proceed in three steps.

(I) We start with an open covering of E with sets Vi' i = 1, 2, .. , of
diameter at most J. Since E is compact there exists a finite subcover U;.
i = 1. 2, ... , N, such that every U; intersects E.
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(II) We observe that

U; nEe U B,
BE:J$p

for every U; and p.

Pick~ for any chosen U;, the unique family!!Jp such that 2pp <diam U;~

2PP _l' where Pp ' p~O, were defined in the constructon of !!Jp ; we put
P -I := 00. Since all the balls in fJOp have the same radius there exists a
number M = M(n) which is independent of i and b and gives an upper
bound of the number of balls in !!Jp intersecting U;, Denote the intersecting
balls by Bij' l~j~j(i)~M, Hence, f3:={Bij}, l~j~j(i), l~i~N, is a
finite covering of E and

(III) Remove every ball in f3 which is a subset of some other ball in
f3 and assume that the smallest of the remaining balls in f3 has radius Pm'
Then we successively replace every remaining ball in f3 having radius larger
than Pm by balls in fJOm so that we obtain a covering of E by balls in !!Jm
only. In this process we observe that if BE:JIJ" and B j, B2 , •. " Bn + 1 E!!Jv+ l'

then

n+l

(diam By = I (diam By.
i~1

This gives a covering of E consisting of all the balls in !!J"" because, by the
construction of E, the interior of every BE!!Jm contains points of E. We
now get the estimate

N N 1 j(i)

I (diam UiY ~ L (diam U;)S ~ L - I (diam BuY
i (I) 1 (II)i~IMj~1

1 1 (2r y
~ - L (diamBY=-(2rp mY·(n+l)m=-,

(III) M BEfiB
m

M M

which gives

If we combine this with (5) and let b tend to zero, we get the theorem.

Remark 2. It follows from the proof that Theorem 1 is true with HS(E)
replaced by H'x(E).
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Remark 3. By choosing p small we can get Proposition 6 as a corolla,y
to Theorem 1.

1.3. In the proof of our main theorem (Theorem 2 in Section ~A)

we need a modification (Proposition 7) of the geometric characterization in
Proposition 4 in Section 1.1. Similar modifications have been proved in
[2,9].

For an Fe [R1l preserving Markov's inequality we are interested in the
best constant c = c(F, n, k) in (2) for k = 1 and refer to it as the best con
stant in Markov's inequality on F for first degree polynomials. Let us cali
this constant C 1 = c1(F, n). We are also interested in the best constant c in
(2) for first degree polynomials which are zero at xo, i.e., such that for each
B=B(xo, r), xoEF, O<r~ 1, (2) holds for all PE&{ with P(xo) =0. We
refer to that c as the best constant in lvfarkor's inequality 0/1 F for first
degree polynomials which vanish at the center. Let us denote this constant
by Co = co(F, n). We claim that

In fact, the left hand inequality follows from the definition of Co and C1 and
the right hand inequality from the following calculation. Let Xo and r be
given, X oE F, 0 < r ~ 1, and let PIX) =Vp· (x - x o)+ P(xoJ be an arbitrary
first degree polynomial. Then PI defined by P dX) = P(x) - P(xo) is zero at
X o and we get

where the last inequality follows from the triangle inequality. From th~s

chain of inequalities we see that C1~ 2co, proving our claim.
We remark that a consequence of our discussion and Proposition 3 is

that F preserves Markov's inequality if F is any closed non-empty subse:
of [R1l such that, for some constant c, (2) holds for every B= B(xo, ri,
xoEF, O<r~ 1, and every PE~ with P(xo)=O.

PROPOSITION 7. Let F be a closed non-empty subset of 1R1" and Co a
positive constant. The following two conditions are equivalent.

0) F preserves Markov's inequality and the best constant in Markov's
inequality on F for first degree polynomials which vanish at the center, is Co

(II) For every ball B=B(xo, r), xoEF, O<r:%; 1, and aery (n-1)
dimensional affine subspace H of [R" containing xo, there exists a point in
B n F at distance larger than or equal to r/co from H.
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Proof We first assume (I). Given Band H as in (II) let b be a unit
normal to H and introduce P(x) = b· (x - x o). By (I) we get

Co
1= Ibl = IVPI ~- max lb· (x-xo)l.

r XEBr,F

Hence, lb· (x - xo)l, which means the distance from x to H, is larger than
or equal to rico for some xEBnF, proving (II); in particular we see that
co;?; 1.

To prove the other half of the theorem we just follow the discussion in
the other direction. We start with P(x)=b·(x-xo), which we may nor
malize by assuming that [bl = 1, then choose H with normal b, and we see
that the geometric condition in (II) gives the Markov inequality required
in (I).

1.4. We can now state and prove our main theorem on the
Hausdorff measure of sets preserving Markov's inequality (2).

THEOREM 2. Assume that Fe IRn preserves Markov's inequality. Let Co

be the best constant in Markov's inequality on F for first degree polynomials
which vanish at the center (defined in Section 1.3), and introduce

._ log(n + 1)
s.- .'

log(1 + 2co}

Then there exists a constant C2 > °depending only on n such that

for all X oE F and all r E (0, 1].

As a corollary we get our main result:

COROLLARY 1. Every closed non-empty set preserving Markov's
inequality has positive Hausdo~ff dimension.

In the proof of Theorem 2 we shall use Proposition 7 to show the
existence of a subset E of F in Theorem 2 of generalized Cantor type
constructed by means of families llJp of balls as in Section 1.2. Theorem 2
will then follow from Theorem 1.

Proof of Theorem 2. (1) Take xoEF, rE(O, 1] and B=B(xo, r). By
Proposition 7 we can find n + 1 affinely independent points Yo, Yl' ..., Yn in
B n F such that
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(i) Yo = xo, and

Oi) if )'0' ... , )j are chosen and j < n we first choose an (n - 1)-dimen
sional affine subspace Hj of IW containing )'0, ... , .l'j and then Yj+ 1 in B r. F
at distance at least rico from Hi'

Our choice means that I)'j + 1 - )'il for i ~ j is larger than or equal to the
distance from )'j+l to H j which is at least rico. We conclude that

I)'i - .r;! ?: rico if i of- j.

(21 Given B=B(xo,r) take B(xo' G), where (J<r is chosen below,
and choose Yo, ..., )'" as in Step 1 but with B replaced by S(x 0, 0"), i.e.. r by
0". This means that YjEFnB(xo,G) and IJj-Yi!?:rJ/CO if iof-j. We now
take balls B( Yi' Pd, j = 0, ..., n, where

0"

Pl=-'
2co

Consequently, these new balls have pairwise disjoint interior, and they are
all subsets of B(xo, r) if

PI = r - G.

We choose (J and PI so that the two last conditions hold, which gives

(3) Now we have the machinery needed to use Theorem 1 in
Section 1.2. The families YJp , p = 0, 1, ... , of balls with radius pp = rp Pare
constructed as follows with P = (1 + 2eol -1. The first family, :!JJo, consists
of the single ball B=B(xo, r), and the second family, :19[, of the balls
B(Yj' pd constructed in Step 2. By repeating the construction in Step 2 Oll

each of the balls in 381 we get :182 , and so on. From the families :!Jp we get
a generalized Cantor set E as in Section 1.2 and it follows that E c F n B
from the construction and the fact that F is closed. Finally, Theorem 2
follows from Theorem 1 with C2 = 11M.

Remark 4. It follows from Remark 2 in Section 1.2 that in Theorem 2
we may replace HS(FnB(xo, r)) by H'x(FnB(xo, r)). This should be
compared to Theorem 3 in Section 1.5.

Remark 5. It appears from the proof of Theorem 2 that F locally
always has a subset E which is a generalized Cantor set with a certain den
sity property having Hausdorff dimension login + 1)/log( 1+ 2eo), where Co
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is the best constant in Markov's inequality on F for first degree polyno
mials which vanish at the center. Hence, from the algebraic characteriza
tion (2) of Markov's inequality for a set F we can immediately make a
statement on the density and local Hausdorff dimension of F.

1.5. There is a partial converse of Theorem 2 with HS changed to
H'oo as indicated in Remark 4.

THEOREM 3. Let F be a closed, non-empty subset of [R". Assume that for
some s> n - 1 there exists a constant C2 > 0 so that

H~(FnB(xo,r))
-~----->-c

(2r)' "'" 2'

for every xoEF and rE(O, 1]. Then F preserves Markov's inequality.

Proof The proof is closely related to the proof of Theorem 3 on p. 39·
in [3]. Take xoEF, rE (0, 1J, B= B(xo, r) and a band like that in Proposi
tion 4 in Section 1.1,

S:= {XE[R": Ib,(x-xo)1 <I;r},

where bE [R", [bl = 1, and I; is a small positive number. We can cover B n S
by cubes with side I;r so that we need at most c3r n- 1 ·l;r!(l;r)"=c31;1-",

C 3 = c3(n), cubes. Hence,

H S (BnS):;:::'c I;I-n·(l;r ~)s=c ,..'l;s-(n-1)
co " 3 yft 4 ,

which tends to zero with I; since s > n - 1. Combined with the assumptions
on F this gives for any B and any S, if I; is small enough,

We choose such an I; and infer from the last chain of inequalities that F n B
is not a subset of B n S for any B or S. Theorem 3 now follows from the
geometric characterization in Proposition 4.

2. SETS PRESERVING A GENERALIZED MARKOV INEQUALITY

2.1. In this section we give an example of a cusp domain which
does not satisfy Markov's inequality, and see that a weaker inequality, (7)
below, in a natural way takes the place of Markov's inequality. For a
constant A> 1 let F be the cusp domain

(6)
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We can immediately see that F does not preserve Markov's inequality by
checking with the geometric criterion in Proposition 4 at zero. Instead we
have the following inequality which is closely related to the result in [1 J:

PROPOSITION 8. Let Qn I' > 0, be the square with side 21' and cenle" at
the origin, and let F be the cusp domain (6) where A> 1. Then. for era)'

positre integer k there exists a constant c(k) so that

,~,

t! j

for ail P E~ and r E (0, 1], and (7) is optima! as concerns the dependence
on r.

Proof (1) There are different ways to realize that there exists a con
stant c(k) such that (7) holds for I' = 1 and all P E!/L see for instance [l J
or [2, Proposition 4], or prove it by using Markov's inequality followed by
the formula immediately before Proposition 10. Now, for r E (0, 1], intro
duce the function g: [R2 -+ [R2 defined by (x, y) r-+ (xiI', y/;-;). For a given
P E ,.J'k introduce PI := pc g-l. Then P = PI 0 g and by using (7) for I' = 1

we get

I
IoP II 1 IloP111 c(k) c(k)
I ::12 i =--:;: I a2 ~-A IIPlIIQ[."F=-; IIPiIQ,nF'
! l. I Q, ,-, F I I I Q! r. F I' r

Analogously we get

II CPII c(k)l-;yl ~-IIPIIQ,r.F'
II l. Q,r. F I'

PE?JL rE(O, 1], (8 )

and (7) is proved.

(2) By choosing Pix, y) = yk for any positive integer k we see that

proving the optimality in 1', and hence the proposition.

From [1] we see that c(k)~8)le4eAand that this constant is optimal ail
concerns the exponent 2,1. in the expression eJ

·• From (8) we also see the
difference between the size of P~ and P:.; the factor 1/1';' in (7) is needed for
P:', but not for r¥ where 1/1' is sufficient, a fact which is natural from the
geometry of F.

By using (7) we deduce, in the following proposition, a condition on F
of the type used in Proposition 2; we remark that the method of proof
applies to more general sets F.
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PROPOSITION 9. Let Qn F, and A be as in Proposition 8. Then, for every
positive integer k, there exists a constant c(k) such that

(9)

for all PE;J}k and rE (0, IJ, and (9) is optimal as concerns the dependence
on r.

Proof (1) If P(x) = L ajx j, Iii :::s; k, x = (Xl, x z) E [Rz, repeated
application of (7) gives

and, consequently,

(2) As in the previous proposition the optimality follows by
considering P(x, y) = yk, and the proof is complete.

We see that when A tends to 1 the cusp in (6) vanishes and (7) turns
into Markov's inequality on F. Proposition 8 is a reason to study sets
preserving a generalized Markov inequality. Another such reason is given
in [11] where sets satisfying an inequality related to (9) are studied with
respect to unique polynomial interpolation and approximation.

2.2. Motivated by Section 2.1 we study the following condition on
a closed, non-empty subset F of jRn, where k is a positive integer and f.1(k)
a non-negative number: There exists a constant c(k) = c(F, n, k) such that

c(k)
IIPIIB:::S; I'(k) IIPIIBnF,

l'
(10)

for all P E?Jk and B = B(xo, 1'), Xo E F, 0 < r:::S; 1. In condition (10) the balls
B may be changed to cubes Q and the condition r:::S; 1 to r:::S; 1'0' where 1'0

is a fixed positive number, without changing the class of sets F satisfying
the condition. This follows by applying the inequality (see for instance [7,
Lemma 1] or use the fact that all norms on the finite dimensional vector
space .<j')k are equivalent)

IIPIIB(XQ,rj:::S;c(n, k, a) IIPIIB(xQ,ar),

and the analogous inequality for cubes.

O<a< 1, PE?Jk>
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PROPOSITION 10. F satisfies (10) for a certain k and Il(k), f1(k) ~ 0, if
and only if there exists a constant c'(k) = c'(F, n, k) such that

(11 \

for all PE?JJk and B=B(xo, r), xoEF, r~ 1.

Proof (1 ) (11) ~ (10). By the mean-value theorem we get for x E B,

IP(x)1 ~ IP(x)-P(xo)1 + IP(xo)1 ~rIIVPIIB+ IP(xo)!,

and an application of (11) gives (10).

(2) (10) ~ ( 11 ). Markov's inequality

II VPII < c,(n, k) l'pl'
B'" I dBr

combined with (10) gives (11), and the proof is complete.

We remark that if (10) holds for k= 1 with p(k)=p(l)=O, then 17
preserves Markov's inequality, by Proposition 3. In particular, this means
that (0) holds for all positive integers k with p(k) = O. When p(1) > 0 the
typical situation is that p(k) in (10) would be kll(l) as illustrated for the
cusp domain in Proposition 9. This means that we do not have an
analogue of Proposition 3 for the generalized Markov inequality (11) and
(10). On the other hand we do have a geometric characterization of (10)
and (11) for k = 1 for instance along the lines of Proposition 7 (see (14) for
n = 1).

2.3. We now turn to a more detailed study of (10) for the case
k = 1. Let A and c be numbers larger than 1 and let .~(c, Ie) be the ciass of
non-empty subsets F of W such that, for all B=B(xo, r), -'oEE, O<r~ 1,

for all P E 91. ( 12)

Remark 6. The same class, Y(c, .{), is defined if the inequality (12) is
replaced by

but with another constant c.

640'69,3-2



246 WALLIN AND WINGREN

Remark 7. If A= 1 then the sets in ff(e, A) preserve Markov's
inequality (see Section 1, Proposition 3).

PROPOSITION 11. If A> 1 and e> 1 then there exists a set in $T(e, A) of
HausdOiff dimension O.

We prove Proposition 11 in the one dimensional case. However, the
proof could be generalized to several dimensions.

Proof We prove the existence of a set Fe IR I in $T(e, A) which is of
Hausdorff dimension 0 in four steps:

U) We construct a set E as the closure of a countable union of
successively chosen finite sets.

(2) We show that E has Hausdorff dimension O.

(3) We prove that EE$T(3e,p), A>p>1.

(4 ) We use the set E to construct a set F such that FE $T(e, A) and
dimH(F)=O.

In parallel with the construction of E we construct a continuous 1-1 map
ping f of E onto the interval [0, 1]. Through this parallel construction and
by expressing numbers in [0, 1J in the binary system the proof will be easy
to follow.

Step 1. We choose p, 1 < p < A, and introduce the notation

(13 )

since this quantity M(k) will appear often in the proof. Introduce

Eo= {O} and f: of---* 0.0, and, for k=O, 1,2, ...,

Ek+1=Eku[Ek+M(k)J and, foraEEk>

f:a+M(k)f---*f(a)+O.O .. · 01 (=f(a)+2- k- 1).

Here Ek+ M(k) is Ek translated the distance M(k). For instance, we see
that E 1 consists of the points 0 and lie and thatf(l/e) = 0.1. Let E be the
closure of UE k · Because of the construction f will map, continuously and
1-1, a dense subset of E onto that dense subset of [0, 1J which consists of
all numbers in [0, 1) with a finite number of ones in their binary expan
sion. The notation f will also be used for the unique extension off to a 1-1
and continuous mapping of E onto [0, 1]. The inverse of f is also con
tinuous and 1-1 and we denote it by g.
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Step 2. The construction and (13) shows that g is increasing and has
two important properties:

(i) O:::;::g(0.a1···akak+l···)-g(O.a1{!2'··UkOO···) :::;:: L~k"M(i)<

(cj(c-1))·M(k), and

(ii) g(0.ala2 .. , ak1ak+2 ... )-g(O.a 1a 2 .,. akOck+2 ... l=Af(k).

From (i) it follows that E is covered by 2k intervals of length

(k
' clv[(kl

v )=--.
c-1

Hence, for every (j > 0 and for every v(k):::;:: 6, we can estimate

which goes to zero for each positive s as k tends to infinity, since iJ. > 1.
Consequently H~(E)= 0 for every (j > 0, i.e.. W(E) = 0 for s > 0, and hence
the Hausdorff dimension of E is zero.

Step 3. If we can prove the following geometric property for the points
in E then it follows that E belongs to Y(3c, jJ.). For each Xo E E and
r E (0, 1] there exists an x E E such that

1'1'
-:::;:: Ix-xol :::;::r.
c

The reason this implies EEY(3c, 11) is as follows:
Take any non-constant P E 2/ 1 and normalize so that P'(x0) = 1. Then,

for B=B(xo, 1'), we obtain by the geometric property

By here writing X-Xo as P(x)-P(xo), a trivial estimate shows tha:
EEff(3c. J1.).

We finish Step 3 by proving the desired geometric property of E. Assume
-'0 E E. Then there exists an a E [0, 1] such that

g(a) = X o'

We now use that given e> 1, I' E (0, lie], and iJ. > 1 there exists a positive
integer k such that

M(k)<r:::;::M(k-l):
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we put k = 0 if lie < r ~ 1. This gives

rfJ.le ~ M(k) < r (15)

and by property (ii) for g there exists for the given g(a) E E a g(b) E E such
that

Ig(a) - g(b)1 = M(k). (16)

Put x = g(b) and we get, using (15) and (16), that the geometric property
(14) holds.

Step 4. Let e> 1 and A> 1 be given. Choose Ji, 1< Ji < A, and let
ra= (1/3)1/(A-fJ.). Use E from Step 1 to form, for a large positive integer m,

i
F;=E+-,

m
i integer, and

ex

F(m)= U Fi •

i= - x,

Since dimH(E)=O it follows that dimH(F(m))=O. We now prove that
there exists an m such that F(m) EfF(e, A), and then by putting F=F(m)
Step 4 will be proved. It is easy to see that by choosing m large enough,
m ~ rna, we can make

. f{IIPIIBnF(ml.p ~ P~O}
III IIPIIB' E I' r

larger than any prescribed number less than 1, independently of
B=B(xa,r) if xaEF(m) and r~ra.

It follows that (12) holds for F=F(ma) for those balls B=B(xa, r),
where xaEF(ma) and r~ra. It remains to prove that (12) holds also for
r<ra. But we know from Step 3 that EEfF(3e, /1) was achieved using a
geometric property for the points in E, and since F(ma) by construction has
the same property we conclude that F(ma) EfF(3e, /1). If we use this, and
the fact that we estimate only for r < ra, we get

3e e
IIPIIB~--:;;-=lIIPIIF(molnB~ ie-I IIPIIF(mo)nB

r r

which is (12) for r < ra. By that Step 4 and the proposition is proved.

Remark 8. An inspection of the proof of Step 2 shows that we can, in
fact, say more on the size of the set constructed. Given that d> log 2jlog A,
A> 1, we can construct a set in fF(e, A), e> 1, having Hausdorff measure
zero with respect to h(x)= (log 1/x)-d.
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